Changing the rules (part 3)

Take a look at a pre-loaf and a pi:screen-shot-2016-09-07-at-11-37-22-pm

If you run them in B37c/S23, the pre-loaf stabilizes quickly, but the pi takes a while — and some space. It needs 110 generations to settle down.

If you run them in B37e/S23, though, the pre-loaf just becomes a loaf immediately and the pi stabilizes much more quickly, in only 23 generations, and without spreading out so much.

So based on that, maybe it’s plausible B37c/S23 could be explosive while B37e/S23 isn’t. And then that might help account for why B37/S23 is explosive while B36/S23 and B38/S23 aren’t.

But this is still rather hand-wavy. Plausible is one thing, proved is something else entirely. First, it’s not just what happens to these objects that matters, but also how likely they are to arise in the first place. No matter how long and over what area a pi evolves, it won’t cause anything if it never crops up in the first place.

Second, in addition to pre-loafs and pis, you also need to consider larger sub-patterns with pre-loaves and pis embedded in them. How likely are they and what do they do under the two rules?

Anyway, proof or no proof, B37e/S23 really isn’t explosive. That means — unlike B37/S23 — it can be explored with a soup search. But apgmera, the C++ version 3 of apgsearch, can’t handle non-totalistic rules. The Python version 1.0 can, or rather a hacked version of it can. Slowly! I’ve been running it and it’s done 2 or 3 soups per second, about 3 orders of magnitude slower than apgmera can run B3/S23. And for some reason it seemed not to be sending results to Catagolue.*

But anyway, 11c/52 diagonal puffers cropped up several times, laying trails of blocks and loaves:

screen-shot-2016-09-07-at-11-49-25-pmThis puffer evolves from this 7 cell object:screen-shot-2016-09-07-at-11-54-50-pmAnd if there’s a suitably placed ship nearby, it becomes an 11c/52 diagonal spaceship. This has cropped up in several soups.screen-shot-2016-09-07-at-11-44-59-pm

*Edit: My B37e/S23 hauls are on Catagolue, but under the enharmonic name B37-c/S23.

Changing the rules (part 2a)

That lame explanation seems even more lame when you consider this: The non totalistic rule B37c/S23 (meaning birth occurs if there are 3 live neighbors, or if there are 7 live neighbors with the dead neighbor in the corner of the neighborhood) is explosive, but B37e/S23 (birth occurs if there are 3 live neighbors, or if there are 7 live neighbors with the dead neighbor on the edge of the neighborhood) isn’t.