I have no idea who’s gotten to this before me, nothing turns up in Google…

Define the zeroth ramp number R(0) to be 123456789. Then define the nth ramp number R(n) to be R(n-1) with a 1 prepended and a 9 appended: R(1) = 11234567899, R(2) = 1112345678999, and so on.

Likewise, the antiramp numbers R'(n) are R'(0) = 987654321, R'(1) = 99876543211, R'(2) = 9998765432111, and so on.

Then R(17), R(19), and R'(38) are (if the Python primefac library is to be believed) primes. And they are the *only* ramp/antiramp primes for a good long time. I checked up through R(1000) and R'(1000)… and just when it seemed there were no more, R'(926) turns out to be prime:

9999999999999999999999999999999999999999999999999999999999999999

9999999999999999999999999999999999999999999999999999999999999999

9999999999999999999999999999999999999999999999999999999999999999

9999999999999999999999999999999999999999999999999999999999999999

9999999999999999999999999999999999999999999999999999999999999999

9999999999999999999999999999999999999999999999999999999999999999

9999999999999999999999999999999999999999999999999999999999999999

9999999999999999999999999999999999999999999999999999999999999999

9999999999999999999999999999999999999999999999999999999999999999

9999999999999999999999999999999999999999999999999999999999999999

9999999999999999999999999999999999999999999999999999999999999999

9999999999999999999999999999999999999999999999999999999999999999

9999999999999999999999999999999999999999999999999999999999999999

9999999999999999999999999999999999999999999999999999999999999999

9999999999999999999999999999999876543211111111111111111111111111111111111111111111111

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111