I was amused by this report of a petition to change the representation of soccer balls on UK signs. At present the image is of a ball divided into brown and white hexagons. At least on one side.

The problem is, if it’s hexagons all the way around, it’s a geometric impossibility. You can’t have a convex polyhedron consisting solely of hexagons, regular or otherwise. In fact: If a convex polyhedron has only hexagons and/or pentagons as faces, then there must be at least 12 pentagons.

The proof is based on Euler’s polyhedron formula: If a convex polyhedron has vertices, edges, and faces, then

.

For our hex-and-pent-agon polyhedron, consisting of hexagons and pentagons, , of course. What’s ? Well, each hexagon has 6 edges and each pentagon has 5, but that counts each edge twice since each edge belongs to two faces. So .

Now, at each vertex, at least 3 edges meet. If you add up the number of edges at each vertex over all vertices you get at least ; but since each edge contributes 2 to that total, .

But from Euler’s formula,

or

and substituting our formulas for and ,

or

or

or

.

QED.

(The equality holds if every vertex has 3 edges — or equivalently, 3 faces. In particular, if you’re using only regular hexagons and pentagons, then there isn’t room at a vertex for more than 3 faces to meet there. So for a polyhedron made of regular hexagons and pentagons, or any polyhedron with exactly three hexagons and/or pentagons meeting at each vertex, .)

Hence the government must be petitioned. As The Aperiodical says, “Ban this hexagonal filth!”

### Like this:

Like Loading...

*Related*

## One thought on “Hexagonal filth”